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Abstract: There is limited research on how perceived peer network influences student 
collaboration in project-based instruction. Research based on interviews or content analyses 
may overlook the semantic structure of discourse. In this study, we combine content analysis 
with computational linguistics to explore the collaboration patterns of 22 first-year students 
during face-to-face group design (n = 7,514 conversational turns) in a project-based engineering 
course. We find that students who reported smaller peer network generally produced discourse 
that provided new information, but less cohesion, compared to students with perceived median 
and large peer networks. Overall, students with small networks also engaged in group planning, 
evaluation, and shared regulation less frequently compared to the other two groups. Findings 
have implications for adjusting group arrangement in design activities. The study also illustrates 
the potential of incorporating computational approaches to detecting discourse. 

 
Introduction 
The strength of students’ existing social ties influences how they co-construct knowledge and seek resources in 
collaborative learning (Dawson, 2008). Students who possess more close-knit ties tend to engage more and 
produce more cohesive communication, with some evidence of better academic outcomes (Putnik et al., 2016). 
Understanding how students with varied perceptions of social ties regulate motivation and behaviors in design 
groups is important in engineering education, where some student populations (e.g., female, underrepresented 
minorities) have reported experiencing a lack of peer support (Hurtado, Newman, Tran, & Chang, 2010). 

However, there has been limited research on regulation processes, particularly the shared regulation of 
goals and progress towards task completion (Malmberg, Järvelä, & Järvenoja, 2017). Content analyses of 
discourse provide fine-grained details about learning, but may not capture the sequential nature and semantic 
structure within situated interactions (Strijbos, Martens, Prins, & Jochems, 2006). This study extends the research 
base by combining content analyses with computational linguistics to examine the interconnection of regulation 
patterns in discussion of engineering design. RQ1. To what extent does discourse cohesion vary among students 
whose expected peer support differs? RQ2. To what extent do regulation processes vary among student groups? 
 
Regulation in collaborative engineering design  
Project-based curricula foster student self-regulation of cognition, motivation, and behavior towards task 
completion (Schmidt, Vermeulen, & Van Der Molen, 2006). In collaborative learning, from a social cognitive 
view, students also practice co-regulated learning to influence other team member’s goals and beliefs (i.e., “you” 
perspective) and shared regulation to plan and monitor progress towards collective goals (i.e., “we” perspective; 
Järvelä & Hadwin, 2013; Malmberg, Järvelä, & Järvenoja, 2017). These patterns are critical in engineering design, 
as there exists a positive relation between the amount of time that learners spend on planning and evaluating 
design alternatives and the resultant quality of their designs (Atman, Cardella, Turns, & Adams, 2005). However, 
examination of collaborative discourse in science and engineering suggests that opportunities for knowledge co-
construction are not equally distributed within groups (Cohen & Lotan, 2014). Notably, few studies have 
examined how regulation types (e.g., self, shared regulation) and processes unfold in tandem (Malmberg et al., 
2017). Existing frameworks of regulation processes cycle among task understanding, goal setting, 
implementation, and evaluation (Malmberg et al., 2017; Sinha, Rogat, Adams-Wiggins, & Hmelo-Silver, 2015). 
Less effective planning, followed by limited monitoring, hinders group problem-solving (Sinha et al., 2015). Thus, 
understanding how groups alternate between regulatory phases may help instructors adjust tasks when needed. 

Techniques to analyze discourse data 
There has been growing effort to apply computational approaches to reduce the processing time of large discourse 
datasets. Manual coding is time-consuming, resource-intensive, and may not attend to the sequence of discourse 
(Strijbo et al., 2006). Meanwhile, automated processes such as social network analyses only capture surface-level 
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interactions (Dowell, Nixon, & Graesser, 2019). Thus, scholars have combined analytics strategies to examine 
learner roles and regulation in collaborative discourse. For example, Dowell et al.  (2018) combine computational 
linguistics and sequential analyses to detect roles in regulation, social coordination, and meaning-making in 
discussion. Shaffer and colleagues (2017) develop nCoder, using regular expressions to automatically classify 
qualitative data. The classifications are incorporated into epistemic network analysis (ENA) to display the 
structure of learning domains over time (Shaffer, 2017). These examples illustrate the potential to apply 
computational approaches to examine interaction data, although questions of validity and reliability between 
human-annotated and automated output remain (Dowell et al., 2019; Lee, Gui, Manquen, & Hamilton, 2019). 
 
Methods 
This study took place in a two-term first-year engineering course in the Southwestern U.S. The course consisted 
of 1-hour lectures and 2-hour lab sections over ten weeks for students to design, build, and test an autonomous 
device. The first term introduced students to fundamental engineering principles. In the second term, students 
formed teams of five to six to work on design projects. Prior to team formation, we surveyed students about their 
peer network in the class (n = 211). We asked students to identify the peers who they would turn to for resources 
and help with tasks, and the weekly frequency that they leveraged peer resources. Peer network ties were 
calculated as (number of peers)*(frequency of interaction). On average, students reported having 4.6 ties. 

Analyses draw from discussion transcripts of four teams (22 students) during the last three labs in the 
second term (24 hours of audio). The selected teams presented a range of perceived network: Below median (n = 
7, M = 2.33, SD = 1.97), median (n = 10, M = 5.00, SD = 0.00), and above median (n = 5, M = 7.00, SD = 1.00). 
The teams had a mix of students from each group, with about half in the median. The sample represents overall 
course demographics (22.73% female, 72.72% underrepresented minorities). The three peer network groups had 
similar compositions of female to male ratio and percentage of underrepresented minority students. 
 
Table 1. Codes for regulation types (italicized) and processes; Malmberg et al. (2017); Jarvela & Hadwin (2016) 
 

Code Definition Example 
Task 
Understanding 

Activate prior knowledge. Think about tasks’ 
purpose and value. Discuss instruction. 

That’s the original one and then we are 
gonna remodify it. 

 

Strategic 
Planning  

State what needs to be done (e.g., discuss 
available resources). Divide work. 

Would you guys want me at open lab? We just 
need to attach the arm right? 

Motivational 
Beliefs 

Share feelings of motivation regarding tasks  
Discuss the group's capabilities, challenges. 

S1: If you want I can finish that one off. 
S2: It’s good. It’s actually pretty fun.  

Control & 
Collaboration 

Discuss tasks. Write/build together. Encourage 
group members. Ask for help. 

S1: Are we saying it needs to be 2 inches below?  
S2: I have to add 0.08. 

Progress 
Monitoring 

Praise/evaluate an idea, a solution, or the 
group's progress regarding time and goals. 

S1: We're going to be done today right? 
S2: I think that landing gear is done. 

 

Reflection 
Evaluate if the group has reached its goals. 
Discuss challenges in the performance. 

It's pretty hard at first doing this, but we have 
gone far this week with the codes. 

Off-task Talk not relevant to ongoing discussion I’m so hungry. Whose pencil is this? 
Self-Regulation Individuals (“I” perspective) about task 

perception, knowledge, goals, motivations. 
Oh yeah, I did it last quarter; it’s not bad. I’ll 
do it if you guys need. 

Shared 
regulation 
 

"Our" perception of tasks; suggestions; actively 
constructing knowledge together. Instances 
where students are responding to questions and 
not suggesting strategies are not coded.  

S3: No, we have to do 4 ESC's 
S2: You could do like 2 or 3 
S2: Oh yeah, I thought you were talking 
about powering all of the other electric. 

  

 
RQ1. Discourse data—each individual’s contribution to group discussion, per weekly session—were 

preprocessed (i.e., convert to lower cases, remove stop words, remove number, stemming), and analyzed using 
TAACO (The Tool for the Automatic Analysis of Text Cohesion; Crossley, Kyle, & McNamara, 2016). The unit 
of analysis is each turn of talk by a student (n unit = 7,514). An explanatory factor analysis was conducted on the 
TAACO output. The scree plot and percentage of variance explained suggested a four-factor model as the most 
parsimonious. Based on prior literature, we grouped the factors into density, semantic, connectives, and givenness 
(see Crossley et al., 2016). We retained items with factor loading > .40 and calculated factor scores for each 
subscale. All subscales had acceptable internal reliability (Cronbach’s 𝛼𝛼  for density = .88, semantic = .98, 
connectives = .89, and givenness = .70). We performed Kruskal-Wallis tests to examine whether there was a 
difference in factor scores among the groups (below median, median, above median peer support). Following 
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results that indicated statistical significance at p = .05, pairwise Mann-Whitney U tests were conducted, with 
Bonferroni corrections for multiple comparisons, to examine which group differed from the others.  

RQ2. A set of codes for regulation types and processes was created based on prior work and iterative 
coding cycles using 15% of the dataset (Table 1; Marmberg et al., 2017; Jarvela & Hadwin, 2013). Because the 
study focused on knowledge co-construction, we coded for shared regulation (“we” perspective) instead of co-
regulation (“you” perspective). Each unit received one code for regulation type and one for process. The first 
author and a research assistant coded 10% of the dataset, with acceptable inter-rater agreement (Cohen’s 𝜅𝜅 = .81). 
The first author coded the rest of the data. The procedure to determine group differences is similar to RQ1. We 
applied ENA (Shaffer, 2017) to explore code co-occurrences. The ENA models were based on a binary matrix 
that reflected the presence of each pair of regulation types and process (e.g., plan-self-regulate) within 4-unit 
moving windows. ENA normalized the networks and visualized co-occurrences along a two-dimensional space. 
 
Findings 
Table 2. Regulation types and process (proportions) and cohesiveness (factor scores), average across sessions 
 
  Below median (1) Median (2) Above median (3) Mann-Whitney U 
  M SD M SD M SD 1:2 1:3 2:3 
Total talks per session 89.53 68.03 130.90 82.30 146.14 97.46 .17 .07 .64 
Cohesion Density .49 1.24 -.19 .86 -.18 .77 .02* .04* .71 

Semantic -.02 .55 -.06 1.35 .16 .15 .68 .68 .91 
Connectives -.25 .85 .10 .96 .08 .71 .29 .76 .98 
Givenness -.51 1.01 .19 1.04 .20 .65 .03* .05* .97 

Regulation 
Process 

Understanding .04 .19 .07 .25 .05 .22 .02* .26 .01* 
Motivation .02 .14 .22 .41 .16 .37 *** *** *** 
Strategic plan .10 .29 .12 .32 .18 .38 .16 *** *** 
Collaboration .74 .44 .49 .50 .50 .50 *** ** .27 
Monitoring .06 .24 .07 .26 .06 .25 1 1 1 
Reflection .00 .06 .11 .31 .06 .24 *** ** *** 

Regulation 
Types 

Self-regulate .08 .28 .07 .26 .13 .34 .75 .27 *** 
Shared .35 .48 .24 .43 .55 .46 ** ** .01* 

* p < .05, ** p < .01, *** p < .001 
 
RQ1. Text analytics reveals that generally, students with below median peer network has individual discourse of 
higher density (i.e., more unique words; M = .49, SD = 1.24) and lower givenness (e.g., fewer third-person 
pronouns, less information restatement; M = -.51, SD = 1.01; Table 2). These results suggest disjointed utterances 
where students were providing new information but not engaging in coherent knowledge construction. 

RQ2. Planning and shared regulation differ by peer network expectations. Pairwise Mann-Whitney U 
tests indicated that students who perceived below median peer support tended to express task understanding, 
motivation, planning, reflection, and co-regulation less frequently, compared to students in the other two groups 
(Table 2). We applied ENA to examine the cooccurrences of regulation processes and types. The average networks 
of each student group (Figure 1) show students who reported median and above median peer network (blue and 
purple) engaged in multiple processes in tandem with self- and shared regulation, rather than just building (red).   

 
Figure 1. Epistemic network of regulation type and process co-occurrences 

 
Discussion 
Research on group knowledge construction in engineering has established a positive link between perceived social 
roles and participation (Bianchini, 1997). We did not find any significant difference in the total turns of talk among 
groups. However, differences in semantic structure highlight the need to examine patterns that are more productive 
in collaborative design. Students’ more sophisticated design process emerged from deeper discourse at certain 
steps like planning, motivation, and evaluation. Prior research indicates that more socially collaborative learners, 
who contribute in ways that are coherent with and productive to group discourse, have significant learning gains, 
compared to less socially engaged learners (Dowell et al., 2018). Findings about different regulation patterns are 
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noteworthy in design engineering. Designers who systematically set goals, frame problems, and choose among 
alternatives generate high-quality solutions, compared to those focused on prototyping (Atman et al., 2005).  

Conclusion 
This exploratory study attempts to understand what types of discourse and regulation learners embrace. Findings 
show that students who reported peripheral social ties seemed to engage in less socially cohesive discourse and 
less shared regulation of task understanding, motivation, reflection, and planning, relative to the other groups. 
Interpersonally cohesive discourse and systematic design evaluation have been associated with learning gains 
(Atman et al., 2005, Dowell et al., 2018). A practical implication is to attend to learners’ perceived support systems 
early on and embed in instruction the types of scaffolds for regulation and discourse conducive to collaboration. 
From a methodological standpoint, we illustrate the potential of using computational approaches to detect co-
occurrences and semantic structure beyond those that can be detected through traditional content analysis. Follow-
up studies can explore the relations between cohesion and regulation features to develop training sets for 
automated classifiers. Existing tools that requires manual refinement of term lists are time-consuming and may 
inflate Type II error rates (Lee et al., 2019). Future research can also examine the individual and group-level 
regulation and learning outcomes in groups with different compositions. Although the three peer network groups 
in this study did not differ in student demographics, future work should explore in depth which students reported 
peripheral social network and uncover potential barriers to productive learning in collaborative design spaces. 
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